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The adaptation of PIC methods requires the ability to change the number of parti-
cles during the calculation. For PIC methods it is not sufficient to adapt the computa-
tional grid. It also necessary to control the local number of particles per cell (particle
rezoning) by increasing or decreasing its value to control the local accuracy. In the
present paper, we describe some general theoretical considerations regarding the ac-
curacy of various particle rezoning methods. Four algorithms are derived and applied
to 1D and 2D PIC simulations. The merits and drawbacks of the algorithms are dis-
cussed. Particle rezoning is then applied to 1D studies of collisionless shocks and the
2D simulations of charging of dust immersed in a plasma. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Methods to adapt particle-in-cell (PIC) kinetic plasma calculations are very valuable in the
study of multiple-length-scale problems. Typically, multiple-length-scale problems present
small regions of stronger gradients embedded in large systems. Under such conditions,
computational efficiency is achieved best by focusing attention on the regions of interest.

In PIC methods it is not sufficient to use adaptive grids with finer spacing in the regions
of interest. It is also necessary to rezone the number of particles. Particle rezoning is defined
as the operation of increasing the number of particles in regions where high accuracy is
required, and of reducing the number of particles where lower accuracy can be tolerated.
Finer grid spacing leads to a better description of the electromagnetic fields, but particle
rezoning is needed to gain a better description of the plasma dynamics and a reduction of
noise [1].

Particle rezoning is also useful for increasing selectively the accuracy in specific velocity
ranges. For example, high-energy particles in collisionless shocks can play a role more
important than their relative abundance would suggest [2]. In this case, the number of
high-energy particles can be increased selectively.
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In the present work, we extend previous methods [1] developed for 1D simulations to
2D and 3D PIC codes and we analyze their accuracy. In Section 2, we discuss the general
properties of the techniques for particle rezoning, and we present methods to control the
number of particles. In Sections 3 and 4, we discuss the conservation properties of the
methods presented in Section 2. Section 5 summarizes the properties of the methods and
gives a self-consistent description of four algorithms to increase or decrease the number
of particles. Sections 6 and 7 describe, respectively, the application of particle rezoning
to electromagnetic collisionless shocks and to the charging of a spherical dust particle
immersed in a plasma. These applications are used to investigate the performance of the
various algorithms presented here.

It is worth mentioning that Sections 3 and 4 are important in evaluating fully the merits
and defects of the various algorithms. However, readers not interested in the derivation of
the methods can find a self-consistent description of the algorithms in Section 5 and can
skip Sections 3 and 4.

2. GENERAL CONSIDERATIONS

Particle rezoning is needed to increase the number of particles in regions where high
accuracy is required, and to reduce the number of particles where lower accuracy can be
tolerated. The primary effect of increasing the number of particles is to reduce the variance of
the statistical description of the distribution function. In a PIC simulation this increases the
accuracy defined as typical in Monte Carlo methods, i.e., as the variance of the simulation.

Particle rezoning must be in effect throughout the calculation to constantly keep the local
required accuracy. In multiple-length-scale problems, the region of interest can move, and
particle rezoning must follow the motion to keep the focus where it is needed. The approach
followed here is to use adaptive grids to follow the evolution of the system [3, 4] and particle
rezoning to keep the number of particles per cell constant. This approach leads to finer grid
spacing in the region of interest and, automatically, to a higher density of computational
particles in that region.

The problem of particle rezoning can be formulated as the replacement of a set of N
particles with position xp, velocity vp, charge qp, and mass m p, with a different set of
N ′ particles with position xp′ , velocity vp′ , charge qp′ , and mass m p′ . The criterion for
replacement is the equivalence between the two sets, defined as the requirement that the
two sets must represent the same physical system, with a different accuracy. This generic
definition of equivalence between two sets is given practical bearing by specifying two rules
for equivalence.

Two sets of particles are considered equivalent under the following conditions:

1. The two sets are indistinguishable on the basis of their contributions to the grid
moments.

2. The two sets of particles sample the same velocity distribution function.

The first criterion concerns the moments of the particle distribution used to solve the field
equations. The moments are defined at the grid points xg as

Mg =
∑

p

S(xg − xp)qpF(vp), (1)

where S is the assignment function [5, 6]. In general, when nonuniform grids are used, x is
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the natural coordinate, i.e., the system of coordinates where the spacing between consecutive
points is uniform and unitary in all directions [3]. The function F of the particle velocity
characterizes the moment. In explicit electrostatic codes, only the charge density is required;
i.e.,

ρg =
∑

p

Sg(xp)qp, (2)

derived from (1) using F(vp) = 1 and using a short notation for Sg(xp) = S(xg − xp).
Electromagnetic and implicit codes [7] require higher order moments like the current density

Jg =
∑

p

Sg(xp)qpvp (3)

and the pressure tensor

�g =
∑

p

Sg(xp)qpvpvp. (4)

The first criterion requires the two sets of particles to give the same moments relevant to the
field equations. Note that if this criterion is satisfied exactly total energy and momentum are
also automatically conserved. The second criterion is more difficult to apply in a quantitative
fashion. In a previous work [1], it was proposed to use the χ2 test or the Kolmogorov and
Smirnov test to verify that the particle distribution is preserved. In practice, this is not easily
achieved.

In fluid PIC codes, the first criterion is the only one to be applied, and general schemes
for particle rezoning can be derived [8]. In kinetic PIC codes, the computational particles
sample the real plasma velocity distribution, and the second criterion must also be imposed.
In the kinetic case the choices are more limited. For this reason, a simpler approach is
followed [1]. To increase the number of particles per cell, a given particle is split into
two or more new particles displaced in space but all sharing the same speed. The weights
and displacements can be chosen to conserve exactly the grid moments, and the velocity
distribution is not altered because all the particles have the same velocity.

Another approach can be considered [2]. A particle can be split in the velocity space.
The daughter particles have the same position but different velocity. The advantage of
this method is that the charge density is not affected. However, the higher order moments
(current density and energy) cannot be all preserved. Furthermore, the velocity distribution
is altered.

To decrease the number of particles, the splitting operation can be inverted to coalesce
two particles into one. The difficulty is that, in general, it is impossible to find two particles
with the same velocity. For this reason, particles with different velocity have to be coalesced.
To minimize the perturbation of the velocity distribution, the particles to be coalesced must
be chosen with similar velocity. An alternative approach is to coalesce three particles into
two, which allows one to conserve both energy and momentum [9].

In the following sections, we will provide general techniques to analyze the different
methods introduced above and to enforce the two conservation laws introduced above.
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3. CONSERVATION OF THE GRID MOMENTS

The first condition for particle rezoning methods is to conserve the grid moments, like
charge or current density, defined in Eq. (1). When a set SN with N particles (labeled p) is
replaced with a set SN ′ with N ′ particles (labeled p′), the condition is

∑
p∈SN

F(vp)Sg(xp)qp =
∑

p′∈SN ′

F(v′
p)Sg(xp′)qp′ , (5)

where x is the natural coordinate that maps the physical grid (in general assumed to be
nonuniform but logically rectangular) into a uniform grid.

As discussed above, it is very difficult to impose (5) when vp and vp′ are unspecified.
For this reason, in the method considered here all the particles in set SN and in set SN ′

are assumed to have the same velocity: vp = vp′ = vo (exactly for splitting methods and
approximately for coalescences). Under this hypothesis, all the moments on the grid are
preserved if

∑
p∈SN

εp Sg(xp) =
∑

p′∈SN ′

Sg(xp′)εp′ , (6)

where εp (εp′ ) is the fraction of the total charge in SN (SN ′ ) allotted to particle p (p′); i.e.,
qp = Qεp where Q =∑p qp is conserved in the exchange between sets.

A simple study of the conditions required for the satisfaction of Eq. (6) can be developed
if the function Sg(xp) is expanded in Taylor series,

Sg(xp) = Sg(xo) +
∑

α

∂Sg

∂xα

∣∣∣∣
xo

�xα
p + 1

2

∑
αβ

∂2S

∂xαxβ

�xα
p�xβ

p + · · · , (7)

where xα
p is the α-component of xp, �xα

p = xα
p − xα

o , and xo is chosen for convenience.
Using Eq. (7), Eq. (6) can be reformulated, imposing the equality of each term of the

series expansion for the two sets,

∑
p

εp =
∑

p′
εp′ , (8)

∑
p

εp�xα
p =

∑
p′

εp′�xα
p′ , (9)

∑
p

εp�xα
p�xβ

p =
∑

p′
εp′�xα

p′�xβ
p′ , (10)

for α, β = 1, 2, 3, where the set is truncated at the second order.
Equations (8)–(10) are relative to the zeroth, first, and second order; higher order equations

are similar. Equations (8)–(10) can be used to determine the properties of the new set SN ′ .
A few comments on Eqs. (8)–(10) are in order.

First, the assignment function Sg(xp) is usually a b-spline of order � : Sg(xp) = b�(x p −
xg)b�(yp − yg)b�(z p − zg); b� has only � − 1 continuous derivatives, and all derivatives of
order m > � vanish. Therefore, the series expansion (7) is valid everywhere only to order
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FIG. 1. Particle rezoning in 1D. One particle (cross) is split in space or two particles (circles) are coalesced.

(� − 1), and to order � in the region where the �th derivative is continuous. For example,

b1(ξ) =
{

1 − |ξ | if |ξ | < 1,

0 otherwise,

where ξ = xα
p − xα

g . b1 is continuous everywhere but its derivative is discontinuous in the
cell center. As a consequence, Eq. (8) is always valid, but Eq. (9) is valid only if all the
particles are in the same half of a cell [1].

Second, the equations to be considered are only up to the order of the b-spline. For
example, in case of � = 1, Eqs. (8) and (9) need to be considered, but Eq. (10) is relevant
only for α 
= β.

Finally, if, for a given order of interpolation �, only m < � equations such as Eqs. (8)–(10)
are considered, the first truncated order will give an estimation of the error.

Equations (8)–(10) will now be used to derive various particle control schemes in one,
two, and three dimensions.

3.1. Binary Schemes

Binary schemes are based on splitting one given particle in N new particles displaced in
space. The inverse operation is used to coalesce particles. In 1D, two new particles can be
generated, displaced in opposite directions (equally or unequally) from the parent particle
(see Fig. 1). In multidimensional problems, the same approach can be used, splitting the
particle in two, along any given direction (see Fig. 2a). A more symmetric scheme is to
split one particle in four (in 2D), or six (in 3D), in an orthogonal configuration (see Figs. 2b

FIG. 2. Particle rezoning in 2D. One particle (cross) can be split into two (circles) along any direction on the
plane (a) or it can be split into four (circles) in an orthogonal configuration directed along any direction (b). The
angle γ is with respect to the horizontal axis.
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FIG. 3. Particle rezoning in 3D. The 2D configurations in Fig. 2 can be used in 3D as well. In 3D one can
also consider an orthogonal configuration to split one particle (cross) into six (circles).

and 3). To derive the new particle properties, Eqs. (8) and (9) are used:

{∑
p′ εp′ = 1∑
p′ εp′�xα

p′ = 0.
(11)

These are derived from Eqs. (8) and (9), recalling that SN has just one particle and setting
xo = x p.

Infinite solutions exist. A natural choice is to select the new particles to have the same
weights εp′ = 1/Np′ . In that case, Eqs. (11) are satisfied if all particles have the same
displacement (in absolute value but opposite in sign). As noted above, Eqs. (11) give exact
conservation of the grid moments only if two conditions are satisfied.

First, all the particles should be in the domain where the series expansion is valid, which
is the same half of the cell in 1D (quarter in 2D and octant in 3D).

Second, higher order equations are not considered, and an error is introduced. In 1D, no
error is present for interpolation orders � ≤ 1, but an error is present for � ≥ 2. An error
estimate is given by the first truncated order:

δSg = ∂2Sg

∂x2

(∑
p′

εp′�2x p′

)
. (12)

The error is of the second order in �x p′ , and it does not depend on xo (∂2Sg/∂x2 is a
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constant). In 2D and 3D, the error is present for � ≥ 1 and can be estimated as

δSg = 1

2

∑
αβ

∂2Sg

∂xα∂xβ

∣∣∣∣
xo

(∑
p′

εp′�xα
p′�xβ

p′

)
. (13)

For � = 1, only α 
= β is present and the error vanishes when the sum in Eq. (13) is zero.
For example in 2D, the scheme in Fig. 2a has zero error if the angle with the horizontal axis
is γ = k π

2 (with integer k), while the scheme in Fig. 2b always has zero error. For � = 2,
an error is always present and is again of the second order.

It is worth noting that the error for � = 2 cannot be removed by considering the equation
for the second order, Eq. (10). In fact, for α = β, Eq. (10) becomes

∑
p′

εp′
(
�xα

p

)2 = 0, (14)

which clearly cannot be satisfied for �xα
p 
= 0 and ε′

p > 0. This result was obtained also in
Ref. [1], using geometric arguments.

3.2. Ternary Schemes

Ternary schemes remove the impossibility expressed in Eq. (14) to obtain exact rezoning
schemes for � = 2. These schemes involve the coalescence of three particles into two. The
inverse operation (splitting) is also possible. The scheme can be worked out in 1D, giving
exact conservation. Choosing xo as the center of mass, the equations to be satisfied are

∑
p′

εp′ = 1, (15)

∑
p′

εp′�x p′ = 0, (16)

∑
p′

εp′(�x p′)2 = Mxx , (17)

where Mxx =∑p εp(�x p)
2. Equation (16) follows from Eq. (9), using xo as the baricenter.

It is easy to verify that Eqs. (15)–(17) are all satisfied if the two new particles have equal
weights 1/2 and are displaced by δ = √

Mxx in the opposite sides of the baricenter. The
method has no error for interpolation orders � ≤ 2, provided the particles are on the same half
of the cell (for interpolation of order � = 1). The method cannot be extended to 2D. Indeed,
for a system of two particles, there is a simple relationship between Mαβ =∑p εp�xα

p�xβ
p ,

Mxx Myy = (Mxy)
2, (18)

which, in general, is not satisfied by a system of three particles. Only approximate ternary
schemes can be derived for coalescences in 2D or 3D. More-complex schemes are required
to preserve the moments exactly when more dimensions are involved and when higher order
interpolation schemes are used.
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4. CONSERVATION OF THE VELOCITY DISTRIBUTION FUNCTION

The second condition for particle rezoning methods is to conserve the local velocity
distribution function f (v). This requirement is difficult to impose and verify. In a previous
work, the χ2 and Kolmogorov and Smirnov tests [1] were applied to verify the preservation
of velocity distributions. However, the simplest approach is to replace sets of particles with
the same velocity. Evidently, the replacement of particles with velocity vo and cumulative
statistical weight wo with new particles with the same velocity vo and cumulative weight
wo (but a different number of particles) does not alter the distribution. This requirement
determines where binary and ternary schemes ought to be used.

4.1. Binary Schemes

When a particle is split in N particles displaced in space, the conservation of f (v) is
exact. However, if the alternative approach to displace the N new particles in the velocity
space and not in the coordinate space [2] is used the velocity distribution is altered. In
Section 7, it will be shown that this can lead to a failure of the splitting in velocity. The
splitting in space is to be preferred.

When two particles are coalesced, it is not possible, in general, to find two particles
displaced in space and not in velocity. For this reason, one has to select in a cell two
particles close in velocity and space. As a matter of fact, the two selected particles will, in
general, differ in velocity, introducing a slight perturbation of f (v).

The new particle velocity can be selected in order to preserve the overall momentum or
energy. However, it is not possible to preserve both; i.e.,

m1v1α + m2v2α = m AvAα,
(19)

m1v
2
1 + m2v

2
2 = m Av2

A,

where 1 and 2 label the old particles and A the new coalesced particle, and where α labels
the components of the velocity (x , y, or z). The error introduced by coalescences is, in loose
terms, less relevant than a corresponding error generated by splitting, as the regions where
splitting is performed are the regions of maximum interest, where the highest accuracy is
desired.

4.2. Ternary Schemes

As discussed above, this method deals with coalescing three particles into two. Evidently,
this method complicates the search of particles with similar velocities when compared to
binary schemes. Moreover, the three selected particles have a larger spreading than the
two particles selected in binary coalescences, increasing the perturbation of the velocity
distribution. However, this method has the advantage of allowing preservation of both
overall momentum and energy; i.e.,

m1v1α + m2v2α + m3v3α = m AvAα + m BvBα,
(20)

m1v
2
1α + m2v

2
2α + m3v

2
3α = m Av2

Aα + m Bv2
Bα,

where 1, 2, and 3 label the old particles, and A and B label the new particles. Note that
strictly only total energy needs to be conserved, but we choose to preserve energy in each
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direction to obtain a closed system. Equations (20) can be satisfied simultaneously; i.e.,

vA,Bα = Mα ±√Eα − M2
α

m A + m B
, (21)

whereMα is the total momentum (in the direction α) and Eα the total energy in the direction
α. Note that the masses m A and m B were derived in the previous section on the basis of the
conservation of grid moments. The ternary scheme is not suitable for splitting because it
introduces a perturbation of the velocity distribution while the binary scheme is exact.

5. SUMMARY OF ALGORITHMS FOR PARTICLE REZONING

In the previous sections, we derived all the required blocks to build algorithms to change
the number of particles in any given cell. In the following, we provide a precise algorithmic
description of two methods to increase the number of particles per cell and of two methods
to decrease the number of particles per cell.

ALGORITHM S1. Given a cell g with Np particles in a 1D, 2D, or 3D system, any
chosen particle (labeled o) with charge qo (and mass obtained from the charge-to-mass
ratio for the species), position xo (in natural coordinates), and velocity vo can be re-
placed by N ′ particles, labeled p′ = {1, 2 . . . N ′}. In 1D, N ′ = 2 and the new properties are
qp′ = qo/2, x p′ = xo ± 1/Np (where the cell size is unitary), vp′ = vo. In 2D, N ′ = 4 and
the new properties are qp′ = qo/4; x1,2 = xo ± 1/Np, x3,4 = xo; y1,2 = yo, y3,4 = yo ±
1/Np; vp′ = vo. In 3D, N ′ = 6 and the new properties are qp′ = qo/6; x1,2 = xo ± 1/Np,
x3,...6 = xo; y1,2,5,6 = yo, y3,4 = yo ± 1/Np; z1,...4 = zo, z5,6 = zo ± 1/Np.

Note that the choice of the particle p = o in the set of Np particles in the cell g is free. In
the result sections, we choose the particle with the largest energy: m pv2

p. Algorithm S1 pre-
serves exactly the velocity distribution function and grid moments. However, for quadratic
assignment functions the grid moments are only approximately preserved (see Section 3).

ALGORITHM S2. Given a cell g with Np particles in a 1D, 2D, or 3D system, any chosen
particle (labeled o) with charge qo (and mass obtained from the charge-to-mass ratio of the
species), position xo (in natural coordinates), and velocity vo can be replaced by N ′ = 2 new
particles, labeled p′ = {1, 2}. The properties of the new particles are qp′ = qo/2, xp′ = xo,
and vp′ = vo ± δv.

Note that, as in S1, the choice particle o is free. Algorithm S2 preserves exactly the grid
charge density ρg (for any choice of the assignment functions), but the velocity distribution
(and consequently the higher order moments on the grid) are perturbed. The direction of δv
is free.

ALGORITHM C1. Given a cell g with Np particles in 1D, 2D, or 3D systems, choose
N = 2 particles, p = {1, 2}, close to each other in the phase space. Their properties are
qp, xp, and vp. The two chosen particles can be replaced by one particle (labeled A) with
qA = q1 + q2, xA = (q1x1 + q2x2)/qA, vA = (q1v1 + q2v2)/qA.

Algorithm C1 preserves the overall charge and momentum and the charge density ρg but
perturbs the velocity distribution. Note that one can choose vA to preserve the energy, but it is
not possible to preserve energy and momentum together. The crucial point of algorithm C1
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is to choose two particles close in velocity and space. A pair search of the two particles
closest in velocity is usually too expensive. For this reason, we perform a diatomic search
that sorts the particles into two bins and selects the largest bin. The binning is repeated in
sequence for each spatial direction and component of the velocity. The binning is continued
until the number of particles in the largest bin is small enough to use a pair search.

ALGORITHM C2. Given a cell g with Np particles in a 1D system, choose N = 3 particles,
p = {1, 2, 3}, close to each other in the phase space. Their properties are qp, xp, vp. The
chosen particles can be replaced by two particles (labeled A, B) with qA,B = 1

2 Q, xA,B =
xcm ± √

Mxx , vA,B,α = Mα ±√Eα − M2
α , where Q =∑p qp, Mxx

∑
p qp(x p − xcm)2,

xcm is the baricenter of the original set, Mα =∑p Q pvpα , and Eα =∑p qpv
2
pα . The index

α labels the components of the velocity.

Algorithm C2 preserves the overall charge, momentum, and energy. Algorithm C2 pre-
serves also ρg but neither the velocity distribution nor the higher order moments on the
grid. Algorithm C2 is not directly extended to 2D and 3D. The choice of the particles to
coalesce is similar to C1, except that the three closest particles are chosen in the final bin.
In the following, algorithms C1, C2, S1, and S2 will be tested in 1D and 2D problems to
evaluate their performance.

6. 1D—COLLISIONLESS SHOCKS

Simulations of collisionless shocks provide a sensitive test of the accuracy of particle
rezoning methods [1]. In the slow shock calculations considered here, a magnetized plasma
is flowing toward a piston that reflects the particles. A switch off slow shock is considered,
and the component of the magnetic field perpendicular to the normal of the piston is set to
zero.

We consider here the same conditions reported by Brackbill and Vu [10]. The initial
configuration is chosen according to the Rankine–Hugoniot conditions. The initial ratios
of the electron and ion pressures to the upstream magnetic field are βe = βi = 0.01. The
ratio of ion to electron mass is mi/me = 25; the ratio of the upstream ion cyclotron and
ion plasma frequencies is ωci/ωpi = 0.01, and the shock normal angle, with respect to the
magnetic field, is ψ = 75◦. The size of the simulation region is L = 200 c/ωpi , and the
shock is followed until ωci t = 50. Particles are injected at the right boundary to simulate a
flowing plasma.

The simulations are performed using CELESTE1D [11], a 1D implicit PIC code, suitably
modified by the author to include particle control.

As a reference, we repeated the calculation in [10] with a uniform grid and without
particle rezoning. The grid has 400 cells giving a uniform spacing with �x = 0.5 c/ωpi ;
256 electrons and 64 ions per cell are used. Figure 4 shows the stack plot of Bz as a function
of the position at 50 equally spaced time intervals between t = 0 and ωci t = 50.

The reference results are compared with a calculation where particle rezoning is per-
formed using Algorithm S1 for splitting and C1 for coalescences. The computation uses an
adaptive grid with finer spacing in the shock region (�x ≈ 0.5 c/ωpi ) and coarser outside.
The region of fine spacing expands in time to follow the motion of the shock. The grid
spacing in the region of the shock is kept fixed, and, consequently, the grid spacing in the
coarser region grows to keep the number of grid points constant and equal to 300. Figure 5
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FIG. 4. Slow shock. Reference calculation with a uniform grid with 400 points. Stack plot of Bz at 50 equally
spaced times from 0 to 50 ω−1

ci . Space is normalized as ξ = xωpi /c. The spatial profile of Bz is plotted at 50 equally
spaced times between ωci t = 1 and 50.

shows the grid spacing at the end of the simulation. Fewer particles are used: 128 electrons
and 32 ions. The particles are loaded with a uniform number per cell, leading to higher
accuracy where the grid is finer. Particle rezoning is required to keep the uniformity of the
number of particles per cell as the grid is adapted.

Figure 6 shows the stack plot of Bz for the calculation described above. Clearly, the
evolution of the system is calculated correctly. In particular, the shock has traveled backward
along the axis for a length of 50 c/ωpi , as in the reference case (Fig. 4) and as required by
the Rankine–Hugoniot conditions.

Figure 7 shows the number of particles in the calculation as a function of time. Particles
are continuously injected at the right boundary to simulate a flowing plasma. Particle re-
zoning is able to coalesce enough particles to keep the number of particles almost constant.
For comparison, if the calculation is conducted without rezoning, the number of particles
increases by 40%. Furthermore, particle rezoning maintains the required local accuracy.
Figure 8 shows the number of particles in each cell at the end of the simulation. The number
is fairly constant, except in the first few cells. Algorithm C1 is applied in every cell where
the target number of 128 electrons and 32 ions is exceeded, but only once per time step.
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FIG. 5. Slow shock. Adaptive grid used in a calculation with rezoning. The grid spacing at the end of the
simulation is shown. Space is normalized as ξ = xωpi /c.

Evidently, in the leftmost cells the rate of growth of the grid spacing and of injection of
particles would require a more aggressive strategy to keep the number of particles constant.
However, even in the leftmost cells, the number of particles is still manageable, and, as
noted above, the total number of particles in the system is essentially constant. However, a
more aggressive coalesce strategy in the leftmost cells would lead to a modification of the
distribution function of the injected particles and it is therefore not advisable.

The continuous injection of particles and the rightward flow makes the simulation of slow
shocks barely suitable for testing the splitting algorithms and much more sensitive to the
choice of the method to coalesce particles. We compared the results above with a simulation
where Algorithm C2 is used instead of C1, all else being identical. Figure 9 shows the stack
plot of Bz for such calculation. Clearly, the velocity of the shock is now altered.

For this particular case, Algorithm C2 fails where C1 was successful. The situation is
paradoxical only at first sight. Algorithm C2 has better conservation properties as far as
the moments are considered; it preserves both energy and momentum while C1 can only
preserve one. However, as noted above, Algorithm C1 preserves the velocity distribution
better. The comparison of Fig. 9 with Fig. 6 shows that, in this case, the preservation of some
particular moments of the velocity distribution (energy and momentum) is less relevant than
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FIG. 6. Slow shock. Stack plot of Bz for a calculation with particle rezoning, using algorithms S1 and C1.
Space is normalized as ξ = xωpi /c. The spatial profile of Bz is plotted at 50 equally spaced times between ωci t = 1
and 50.

preserving the velocity distribution in a global sense. This is hardly a surprise, as kinetic
systems, unlike fluid models, are concerned with the shape of the velocity distribution and
not merely with its first few moments. However, in certain applications involving collisional
systems, ternary schemes can prove useful in representing collision processes [9].

7. 2D—CHARGING OF DUST PARTICLES

Dust particles immersed in plasmas tend to acquire a negative charge. The ions and
electrons of the plasma reach the surface and stick to it. If no secondary emission or
photoemission is present, the equilibrium charge on the dust particle must be negative to
repel the more mobile electrons and attract the ions to achieve a balance of electron and ion
currents. This problem is of interest in laboratory and in space plasmas [12, 13]. We consider
here the case where a plasma with an ion-to-electron-temperature ratio Ti/Te = 0.05 and
ion-to-electron-mass ratio mi/me = 1836 is drifting relative to a spherical dust particle
of radius a/λDe = 0.4, where λDe is the electron Debye length. The relative velocity w is
expressed by the Mach number M = wm1/2

i /(kTe)
1/2 = 10. The system is simulated using
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FIG. 7. Slow shock. History of the total number of particles in the calculations reported in Fig. 6. Time is
normalized as τ = ωpi t . The initial number of particles is 48,000.

a cylindrical coordinate system with the vertical axis along the direction of the plasma flow
and centered in the center of the spherical dust particle. In this configuration, the azimuthal
coordinate is invariant, and the problem is 2D axisymmetric.

The interaction of the dust particle with the plasma is described with the immersed
boundary method. The application of the immersed boundary method in PIC codes is
described in Ref. [14] for fluid problems and in Ref. [15] for plasmas. In the present work,
we will use the immersed boundary explicit PIC code DEMOCRITUS developed by the
author for dusty plasma simulations [12]. A brief description of the method is given below;
more details can be found in Ref. [12].

The dust particle is represented by motionless computational particles (object particles)
with properties suitable to describe the macroscopic properties of the dust. Dust plasma
interface conditions are treated with the immersed boundary method in two steps.

First, we assign to the object particles a susceptibility χp that can be interpolated to the
vertices of the grid xv to obtain a grid susceptibility,

χv =
∑

p

Svpχp, (22)
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FIG. 8. Slow shock. Number of particles in each cell at the end of the calculation reported in Fig. 6. Space is
normalized as ξ = xωpi /c.

where Svp are the linear assignment weights. The grid susceptibility is used to alter the
Poisson’s equation,

Dcv(1 + χv)Gvc′φc′ = ρc, (23)

where the potential φ and the charge density ρ are defined on the cell centers xc and
repeated indexes are summed. The operators Dcv and Gvc are a difference approximation of
the divergence and gradient, respectively. As discussed in detail elsewhere [14, 15], Eq. (23)
is solved everywhere, including in the interior of the dust particle. The term (1 + χv) gives
an approximation to the correct interface conditions for the electric field. In the present
case, χv is the susceptibility of dielectric dust.

Second, the object particles exert a friction on the plasma particles, via a slowing property
µp that is interpolated to the grid, as in Eq. (22), to produce a grid quantity µv used to
introduce a damping term to the equation of motion of the plasma particles

dvp

dt
=
∑

v

Ev Svp − vp

∑
v

Svpµv. (24)
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FIG. 9. Slow shock. Stack plot of Bz for a calculation similar to the one shown in Fig. 6, but with algorithm
C2 instead of C1. Space is normalized as ξ = xωpi /c. The spatial profile of Bz is plotted at 50 equally spaced
times between ωci t = 1 and 50.

The second term in Eq. (24) can be as big as desired to stop the plasma particles on the
surface of the dust. The damping term is zero everywhere outside the region occupied by the
dust. Equations (23) and (24) allow one to treat the field and particle boundary conditions
on the surface of the dust.

Figure 10 shows the configuration of the grid and of the dust particle for the problem
considered here. Note that a nonuniform (but constant in time) grid is used to describe better
the sheath around the dust particle. The distance of the dust particle from the boundaries is
20 λDe. The plasma species are initially loaded according to a drifting maxwellian distribu-
tion with a downward vertical net flow velocity corresponding to a Mach number M = 10.
The ion-to-electron-mass ratio is mi/me = 1836 and the temperature ratio is Ti/Te = 0.05.
To reach an equilibrium, particles that flow out of the lower boundary are replaced by
particles injected at the top boundary [12].

Figure 11 shows the history of the net charge accumulated on the dust particle. In this case,
particle rezoning (Algorithms S1 and C1) was used to ensure the accuracy of the calculation.
The particles are loaded, initially, with a constant number of particles per cell, leading to
a higher concentration around the dust particle where the cells are smaller. However, the
plasma flow tends to empty the region around the dust, reducing the accuracy. Splitting
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FIG. 10. Dust charging. Configuration of the system. The dust particle is spherical and is on the axis of
symmetry at the origin of a cylindrical system. A nonuniform grid is used.

FIG. 11. Dust charging. History of the net charge accumulated on the dust particle. Calculation with particle
rezoning, using algorithms S1 and C1. Charge is normalized as Q = qdust/2πneλ3

De and time as τ = tωpe.
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FIG. 12. Dust charging. Number of particles per cell at the end of the calculation shown in Fig. 11. Space is
normalized as ξ = xωpe/c.

FIG. 13. Dust charging. Number of particles per cell at the end of a calculation without particle rezoning.
Space is normalized as ξ = xωpe/c.
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FIG. 14. Dust charging. History of the net charge accumulated on the dust particle calculation without particle
rezoning. Charge is normalized as Q = qdust/2πneλ3

De and time as τ = tωpe.

the particles moving toward the dust and coalescing the particles moving away from it is
desirable to keep the number of particles per cell and the accuracy constant. Figure 12 shows
the number of particles per cell at the end of the calculation. Clearly, particle rezoning is
effective in achieving uniformity.

If the calculation is repeated without particle rezoning, the accuracy worsens in time as
the region around the dust becomes less populated. Two effects lead to decreased accuracy
around the dust particle: the particles originally present are in part captured by the dust
and in part just simply flow away according to their average downward velocity of Mach
M = 10. The new particles that replace them are flowing from regions of larger cells and
are less numerous, leading to a decrease of accuracy.

Figure 13 shows the number of particles at the end of a calculation without particle
rezoning. The region around the dust is sampled poorly by the particles, decreasing severely

FIG. 15. Dust charging. History of the net charge accumulated on the dust particle. Calculation with particle
rezoning, using algorithms S2 (with δv = vo/10) and C1. Charge is normalized as Q = qdust/2πneλ3

De and time
as τ = tωpe.
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FIG. 16. Dust charging. History of the net charge accumulated on the dust particle. Calculation with particle
rezoning, using algorithms S2 (with δv = vo/100) and C1. Charge is normalized as Q = qdust/2πneλ3

De and time
as τ = tωpe.

the accuracy. Figure 14 shows the history of the dust charge. At the beginning, the evolution
is correct, but as the number of particles decreases around the dust, the accuracy worsens
and the calculation loses any physical meaning: the dust charge does not even reach a steady
state. Clearly, in this case, particle rezoning is crucial to obtaining the correct result.

The calculation described above is repeated using Algorithm S2 to test the effects of the
splitting in velocity on the particle distribution function. Figure 15 shows the charge history
in this case. Evidently, the particle distribution function is altered to an unacceptable degree.
The charge on the dust is very sensitive to the electron velocity distribution function [12],
which determines the fraction of electrons reflected by the sheath. In Fig. 15, the splitting
is done with Algorithm S2 using δv = vo/10 in the direction of vx . If δv = vo/100 is used,
the alteration is still very relevant (see Fig. 16). Evidently, in the case of dust charging,
Algorithm S2 fails where S1 was successful.

8. CONCLUSIONS

We have formulated algorithms for particle rezoning in multidimensional kinetic PIC
simulations. The present work extends to 2D and 3D methods previously developed for 1D
systems [1].

The best algorithm for increasing the number of particles has been found to be the splitting
of one particles into various particles (two in 1D, four in 2D, and eight in 3D) displaced in
space.

The best algorithm for decreasing the number of particles has been found to be the
coalescence of two particles close to each other in phase space.

We have applied the algorithm with success to 1D studies of collisonless shocks and to
2D problems involving the self-consistent charging of a dust particle immersed in a plasma.
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